Click to email

   City Spectra  Sky-GLow Analysis  The New Sky-Glow Spectra  Evolution of Sky-Glow  Lighting Laws   

Given our large and modern urban populations, outdoor lighting is necessary. However, excessive illumination than just adequate lighting is frivolous, wasteful and sometimes dangerous. There is also exploitation involved by lighting contractors & installers, and cities cannot ignore the significant consumption costs by having wasteful, dusk-to-dawn lighting.

Despite the many advances in the field of excellent, non-polluting lighting products and practices, the brightening of the night sky continues to increase over many regions. And now the color of the night sky is shifting for the second time in 30 years and the spectrum of skyglow is changing. What does it all mean to a nebula hunter or an astro-imager?

The kaleidoscopic spectrum at the top was easily obtained from an overcast sky over Montreal, Quebec, in 2017.

We know what sky-glow looks like over our gleaming cities, but what does the spectrum of light pollution look like?

Montreal 1996 & 2018

The January 1996 image was taken on a misty night while the 2018 image was shot on a drier evening. Can you spot any changes over the 22 years? The big changes are at street level.

Most amateur astronomers are aware of the basic causes of urban sky-glow. However, limited or very dated information on the spectrum of sky-glow has been available. It's likely that countless of amateurs may have an incomplete knowledge of light-pollution compelling the need for an analysis such as this. Finally that analysis is here. This is Your Light-Pollution!

When anyone asserts that a certain type of contamination is caused, that claim is often backed up by a chemical analysis which may also expose the cause. For any discussion of a "pollution of light", a spectral analysis is obligated. As in any field of spectroscopy, a spectral analysis of sky-glow will focus in on the question: What is it made from? An analysis of sky-glow may have been done for professional observatories typically isolated from huge amounts of urban sky-glow. Having little knowledge of urban sky-glow spectra, city stargazers are forced to cope blindly.

The difference between my clear night sky-glow spectrum and my overcast "up-light" spectrum over my back yard in Ville-Saint-Laurent, Quebec, (a suburb of Montreal):

Clear vs Overcast

Shot in 2008 using a modified digital camera, the two spectra above were obtained less than 24 hours apart; the top part on a clear night, the bottom part on the following overcast evening. The top spectrum approaches the classic Rayleigh scattering law, where the scattering intensity for any wavelength follows the famous inverse of 4th power of wavelength: (Iscat ∝ 1/λ4). The bottom part is simple diffuse reflection; the scattered intensities are essentially independent of any wavelength (shown as Iscat ∝ λ0).

Note the missing blue band compared to the logo pic at the top of this page. You can also calculate that the top exposure was 10x longer than the bottom overcast exposure. Clear-night spectra are difficult to obtain, but not impossible. On the other hand, overcast urban spectra are very easy to obtain and are a depiction of the local up-light.

All clear nights are NOT equal. Notice the color of the sky between the warm night and the cooler night using exactly the same digital camera settings.

air mass comparison

Taken over my back yard in 2018, spectra acquired for the above two clear nights show how the air temperature can shift the spectral features, (remember, I'm talking about clear nights).

cT vs cP air mass

More City Spectra.